3.5.83 \(\int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=61 \[ \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x} (c d f-a e g)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {860} \begin {gather*} \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x} (c d f-a e g)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/((f + g*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/((c*d*f - a*e*g)*Sqrt[d + e*x]*Sqrt[f + g*x])

Rule 860

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e
 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && EqQ[m - n - 2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(c d f-a e g) \sqrt {d+e x} \sqrt {f+g x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 50, normalized size = 0.82 \begin {gather*} \frac {2 \sqrt {(d+e x) (a e+c d x)}}{\sqrt {d+e x} \sqrt {f+g x} (c d f-a e g)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/((f + g*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)])/((c*d*f - a*e*g)*Sqrt[d + e*x]*Sqrt[f + g*x])

________________________________________________________________________________________

IntegrateAlgebraic [B]  time = 0.64, size = 143, normalized size = 2.34 \begin {gather*} \frac {2 \sqrt {d+e x} (e f+e g x)^{3/2} \sqrt {a e^2+c d e x} \sqrt {a e^2-c d^2+c d (d+e x)}}{e^2 \sqrt {\frac {(d+e x) \left (a e^2+c d e x\right )}{e}} \sqrt {g (d+e x)-d g+e f} \left (\frac {g (d+e x)-d g+e f}{e}\right )^{3/2} (c d f-a e g)} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[d + e*x]/((f + g*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[d + e*x]*Sqrt[a*e^2 + c*d*e*x]*(e*f + e*g*x)^(3/2)*Sqrt[-(c*d^2) + a*e^2 + c*d*(d + e*x)])/(e^2*(c*d*f
 - a*e*g)*Sqrt[((d + e*x)*(a*e^2 + c*d*e*x))/e]*Sqrt[e*f - d*g + g*(d + e*x)]*((e*f - d*g + g*(d + e*x))/e)^(3
/2))

________________________________________________________________________________________

fricas [B]  time = 0.43, size = 114, normalized size = 1.87 \begin {gather*} \frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f}}{c d^{2} f^{2} - a d e f g + {\left (c d e f g - a e^{2} g^{2}\right )} x^{2} + {\left (c d e f^{2} - a d e g^{2} + {\left (c d^{2} - a e^{2}\right )} f g\right )} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)/(c*d^2*f^2 - a*d*e*f*g + (c*d*e*f*g
- a*e^2*g^2)*x^2 + (c*d*e*f^2 - a*d*e*g^2 + (c*d^2 - a*e^2)*f*g)*x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.01, size = 63, normalized size = 1.03 \begin {gather*} -\frac {2 \left (c d x +a e \right ) \sqrt {e x +d}}{\sqrt {g x +f}\, \left (a e g -c d f \right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2),x)

[Out]

-2/(g*x+f)^(1/2)*(c*d*x+a*e)/(a*e*g-c*d*f)*(e*x+d)^(1/2)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {e x + d}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (g x + f\right )}^{\frac {3}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^(3/2)), x)

________________________________________________________________________________________

mupad [B]  time = 4.64, size = 100, normalized size = 1.64 \begin {gather*} -\frac {2\,\sqrt {d+e\,x}\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\left (x\,\sqrt {f+g\,x}-\frac {\sqrt {f+g\,x}\,\left (c\,d^2\,f-a\,d\,e\,g\right )}{a\,e^2\,g-c\,d\,e\,f}\right )\,\left (a\,e^2\,g-c\,d\,e\,f\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(1/2)/((f + g*x)^(3/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

-(2*(d + e*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/((x*(f + g*x)^(1/2) - ((f + g*x)^(1/2)*(c*d
^2*f - a*d*e*g))/(a*e^2*g - c*d*e*f))*(a*e^2*g - c*d*e*f))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {d + e x}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (f + g x\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(g*x+f)**(3/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)/(sqrt((d + e*x)*(a*e + c*d*x))*(f + g*x)**(3/2)), x)

________________________________________________________________________________________